miércoles, 5 de septiembre de 2012

ALQUINO

Los alquinos son hidrocarburos alifáticos con al menos un triple enlace -C≡C- entre dos átomos de carbono. Se trata de compuestos metaestables debido a la alta energía del triple enlace carbono-carbono. Su fórmula general es CnH2n-2.

Nomenclatura

Para que den nombre a los hidrocarburos del tipo alquino se siguen ciertas reglas similares a las de los alquenos.
  1. Se toma como cadena principal la cadena continua más larga que contenga el o los triples enlaces.
  2. La cadena se numera de forma que los átomos del carbono del triple enlace tengan los números más bajos posibles.
  3. Dicha cadena principal a uno de los átomos de carbono del enlace triple. Dicho número se sitúa antes de la terminación -ino. Ej.: CH3-CH2-CH2-CH2-C≡C-CH3, hept-2-ino.
  4. Si hay varios triples enlaces, se indica con los prefijos di, tri, tetra... Ej.: octa-1,3,5,7-tetraino, CH≡C-C≡C-C≡C-C≡CH.
  5. Si existen dobles y triples enlaces, se da el número más bajo al doble enlace. Ej.: pent-2-en-4-ino, CH3-CH=CH-C≡CH
  6. Los sustituyentes tales como átomos de halógeno o grupos alquilo se indican mediante su nombre y un número, de la misma forma que para el caso de los alcanos. Ej.: 3-cloropropino, CH≡C-CH2Cl; 2,5-dimetilhex-3-ino, CH3-C(CH3)-C≡C-C(CH3)-CH3. 
NOMENCLATURA DE ALQUINOS

  CH\equivCH etino(acetileno); CH3–C\equivCH propino;  CH3–CH2–C\equivCH 1-butino; CH3-C\equivC-CH3 2-butino;

 CH\equivC- etinilo; CH\equivC-CH2 2-propinilo; CH3–C\equivC- 1-propinino; CH3CH2–CH2–C\equivCH 1-pentino;

Propiedades físicas:Son insolubles en agua, pero bastante solubles en disolventes orgánicos usuales y de baja polaridad: ligroína, éter, benceno, tetracloruro de carbono. Son menos densos que el agua y sus puntos de ebullición muestran el aumento usual con el incremento del número de carbonos y el efecto habitual de ramificación de las cadenas. Los puntos de ebullición son casi los mismos que para los alcanos o alquenos con el mismo esqueleto carbonado.

Los tres primeros términos son gases; los demás son líquidos o sólidos. A medida que aumenta el peso molecular aumentan la densidad, el punto de fusión y el punto de ebullición.

Propiedades químicas

Las reacciones más frecuentes son las de adición: de hidrógeno, halógeno, agua, etc. En estas reacciones se rompe el triple enlace y se forman enlaces de menor polaridad: dobles o sencillos.

Hidrogenación de alquinos

Los alquinos pueden ser hidrogenados para dar los correspondientes cis-alquenos (doble enlace) tratándolos con hidrógeno en presencia de un catalizador de paladio sobre sulfato de bario o sobre carbonato de calcio (catalizador Lindlar) parcialmente envenenado con óxido de plomo. Si se utiliza paladio sobre carbón activo el producto obtenido suele ser el alcano correspondiente (enlace sencillo).
CH≡CH + H2 → CH2=CH2 + H2 → CH3-CH3
Aunque la densidad de electrones y con esto de carga negativa en el triple enlace es elevada pueden ser atacados por nucleófilos. La razón se encuentra en la relativa estabilidad del anión de vinilo formado.
Frente al sodio o el litio en amoníaco líquido, se hidrogena produciendo trans-alquenos.
CH3-C≡C-CH3 + 2 Na + 2 NH3 → CH3-CH=CH-CH3 (trans) + 2 NaNHH2

Halogenación, hidrohalogenación e hidratación de alquinos

Así como les ocurre a los alquenos, los alquinos participan en otras reacciones de adición:

Halogenación

Dependiendo de las condiciones y de la cantidad añadida de halógeno (flúor, F2; cloro, Cl2; bromo, Br2...), se puede obtener derivados halogenados del alqueno o del alcano correspondiente.
HC≡CH + Br2 → HCBr=CHBr
HC≡CH + 2 Br2 → HCBr2-CHBr2

Hidrohalogenación, hidratación, etc.

El triple enlace también puede adicionar halogenuros de hidrógeno, agua, alcohol, etc., con formación de enlaces dobles o sencillos. En general se sigue la regla de Markovnikov.
HC≡CH + H-X → CH2=CHX donde X = F, Cl, Br...
HC≡CH + H2O → CHOH=CH2

Acidez del hidrógeno terminal

En algunas reacciones (frente a bases fuertes, como amiduro de sodio Na-NH2 en amoniaco NH3) actúan como ácidos débiles pues el hidrógeno terminal presenta cierta acidez. Se forman acetiluros (base conjugada del alquino)que son buenos nucleófilos y dan mecanismos de sustitución nucleófila con los reactivos adecuados. Esto permite obtener otros alquinos de cadena más larga.
HC≡CH + Na-NH2 → HC≡C:- Na+
HC≡C:- Na+ + Br-CH3 → HC≡C-CH3 + NaBr
En este caso el acetiluro de sodio formado ha reaccionado con bromometano con formación de propino.

Aplicaciones

La mayor parte de los alquinos se fabrica en forma de acetileno. A su vez, una buena parte del acetileno se utiliza como combustible en la soldadura a gas debido a las elevadas temperaturas alcanzadas.
En la industria química los alquinos son importantes productos de partida por ejemplo en la síntesis del PVC (adición de HCl) de caucho artificial etc.
El grupo alquino está presente en algunos fármacos citostáticos.
Los polímeros generados a partir de los alquinos, los polialquinos, son semiconductores orgánicos y pueden ser dotados parecido al silicio aunque se trata de materiales flexibles.

Analítica

Los alquinos decolorean una solución ácida de permanganato de potasio y el agua de bromo. Si se trata de alquinos terminales (con el triple enlace a uno de los carbonos finales de la molécula) forman sales con soluciones amoniacales de plata o de cobre. (Estas sales son explosivas) La mayor parte de los alquinos se fabrica en forma de acetileno. A su vez, una buena parte del acetileno se utiliza como combustible en la soldadura a gas debido a las elevadas temperaturas alcanzadas.
En la industria química los alquinos son importantes productos de partida por ejemplo en la síntesis del PVC (adición de HCl) de caucho artificial etc.
El grupo alquino está presente en algunos fármacos citostáticos.
Los polímeros generados a partir de los alquinos, los polialquinos, son semiconductores orgánicos y pueden ser dotados parecido al silicio aunque se trata de materiales flexibles. 3

Estructura electrónica

El triple enlace entre los carbonos es formado por dos orbitales sp y dos orbitales p. Los enlaces hacia el resto de la molécula se realizan a través de los orbitales sp restantes. La distancia entre los dos átomos de carbono es típicamente de 120 pm. La geometría de los carbonos del triple enlace y sus sustituyentes es lineal.
Orbitales alquinos 1.png Orbitales alquinos 2.png




jueves, 14 de junio de 2012

https://www.google.com/calendar/embed?src=c9ccnubmnpl3qmsr7j2tr0f0b0%40group.calendar.google.com&ctz=America/Bogota CALENDARIO




Alqueno

Los alquenos u olefinas son hidrocarburos insaturados que tienen uno o varios dobles enlaces carbono-carbono en su molécula. Se puede decir que un alqueno no es más que un alcano que ha perdido dos átomos de hidrógeno produciendo como resultado un enlace doble entre dos carbonos. Los alquenos cíclicos reciben el nombre de cicloalquenos.

Formulación y nomenclatura de alquenos

La fórmula general de un alqueno de cadena abierta con un sólo doble enlace es CnH2n. Por cada doble enlace adicional habrá dos átomos de hidrógeno menos de los indicados en dicha fórmula.

Fórmula Recomendaciones IUPAC-1979 Recomendaciones IUPAC-19931 2

localizador - prefijo de número átomos C (acabado en -eno) prefijo de número átomos C - localizador -eno
CH3-CH2-CH=CH2 1-buteno but-1-eno
Nomenclatura alquenos.JPG

 Propiedades físicas

a presencia del doble enlace modifica ligeramente las propiedades físicas de los alquenos frente a los alcanos. De ellas, la temperatura de ebullición es la que menos se modifica. La presencia del doble enlace se nota más en aspectos como la polaridad y la acidez.

Polaridad

Dependiendo de la estructura, puede aparecer un momento dipolar débil.El enlace alquilo-alquenilo está polarizado en la dirección del átomo con orbital sp2, ya que la componente s de un orbital sp2 es mayor que en un sp3 (esto podría interpretarse como la proporción de s a p en la molécula, siendo 1:2 en sp2 y 1:3 en sp3, aunque dicha idea es simplemente intuitiva). Esto es debido a que los electrones situados en orbitales híbridos con mayor componente s están más ligados al núcleo que los p, por tanto el orbital sp2 es ligeramente atrayente de electrones y aparece una polarización neta hacia él. Una vez que tenemos polaridad en el enlace neta, la geometría de la molécula debe permitir que aparezca un momento dipolar neto en la molécula, como se aprecia en la figura inferior. Polaridad alquenos.png

 

                


Reacciones de los alcanos    Los alcanos por lo general no se consideran sustancias muy reactivas. Sin embargo, en condiciones adecuadas pueden llevar a cabo diversas tipos de reacciones, incluyendo la combustión. El quemado del gas natural, de la gasolina y del petróleo implica la combustión de los alcanos. Todas estas reacciones son altaríiente exotérinicas:
            Éstas, y reacciones similares, se han usado por mucho tiempo en procesos industriales y en la calefacción doméstica y para cocinar.    La halogenación de los alcanos -esto es, la sustitución de uno o más átomos de hidrógeno por átomos de halógeno- es otra clase de reacción bien estudiada. Cuando una mezcla de metano y cloro se calienta a más de 100ºC o se irradia con luz de longitud de onda apropiada, se produce el cloruro de metilo:
    Si el cloro gaseoso está presente en cantidad suficiente, la reacción puede continuar:
    Una buena parte de la evidencia experimental sugiere que la etapa inicial de la primera reacción de halogenación se lleva a cabo de la siguiente manera:
      Así el enlace covalente del Cl2 SC rompe y se forman dos átomos de cloro. Se sabe que el enlace Cl-Cl se rompe cuando se calienta o irradia la mezcla porque la energía de enlace del Cl2 es 242.7 kJ/mol, mientras que se requieren unos 414 kJ/mol para rormper los enlaces C-H del CH4.            Un átomo de cloro libre contiene un electrón desapareado, que se ve como un punto solo. Estos átomos son sumamente reactivos y atacan las moléculas de metano de acuerdo con la ecuación:
        Esta reacción produce cloruro de hidrógeno y el radical Metilo ·CH3. El radical metilo es otra especie reactiva; se combina con el cloro molecular para dar cloruro de metilo y un átomo de cloro:
        En la misma forma se pueden explicar la producción de cloruro de metilieno y las reacciones subsecuentes a partir del cloruro de metilo. El mecanismo real es más complejo que el esquema que se ha mostrado porque a menudo se producen "reacciones secundarias" que no conducen a los productos deseados, como:
        Los alcanos en los que se han sustituido uno o más átomos de hidrógeno por un átomo de halógeno se llaman alqui halogenuros. Entre el gran número de alqui halogenuros, los mejor conocidos son el cloroformo (CHCl3), el tetracloruro de carbono (CCl4), el cloruro de metileno (CH2Cl2), y los clorofluorohidrocarburos.        El cloroformo es un líquido volátil, de sabor dulce, se usó por muchos años como anestésico. Sin embargo, en virtud de su toxicidad -puede producir daño severo en el hígado, los riñones y el corazón- ha sido sustituido por otro compuesto. El tetracloruro de carbono, también una sustancia tóxica, sirve como líquido limpiador, pues quita manchas de grasa de la ropa. El cloruro de metileno se usa como disolvente para descafeinar el café y removedor de pintura.






Hidrocarburos Saturados

Alcanos
Son hidrocarburos lineales con todos sus enlaces simples, por lo que se les denomina hidrocarburos saturados. Se nombran anteponiendo un prefijo griego que indica el número de átomos de carbono a la terminación -ano. Los primeros de la serie son: (Los siguientes llevan por nombre pentano, hexano y heptano, octano, nonano y decano).
Metano: CH4
Etano: CH3-CH3
Propano: CH3-CH2-CH3
Butano: CH3-CH2-CH2-CH3

Aquí tienes el dibujo (estático) y la simulación (dinámica) de la molécula de butano. Como puedes apreciar en la simulación, girando la molécula con el ratón, las cadenas carbonadas no son exactamente lineales, en realidad tienen un trazado en zig-zag en las tres dimensiones espaciales. 
  
También existen en la Naturaleza hidrocarburos ramificados, que se nombran dando a los sustituyentes el nombre del prefijo numércio griego acabado en -il, seguido por el nombre de la cadena principal. Un ejemplo de ellos son el metilpropano, y el metilbutano. Aquí tienes sus simulaciones para que las muevas y gires en el espacio 
Las cadenas ramificadas pueden dar lugar a la isomería de cadena. Consiste en que dos compuestos tienen la misma fórmula molecular pero distinta fórmula estructural lo que implica propiedades físicas y químicas distintas. Por ejemplo el metilpropano y el butano son isómeros. Ambos tienen la misma fórmula molecular C4H10 pero distintas fórmulas estructurales, CH3-CH(CH3)-CH3  y  CH3-CH2-CH2-CH3.

omenclatura de alcanos Imprimir E-Mail
Ácido barbitúrico
Ácido barbitúrico
En los orígenes de la química, los compuestos orgánicos eran nombrados por sus descubridores.  La urea recibe este nombre por haber sido aislada de la orina.
El ácido barbitúrico fue descubierto por el químico alemán Adolf von Baeyer, en 1864.  Se especula que le dio este nombre en honor de una amiga llamada bárbara.

La ciencia química fue avanzando y el gran número de compuestos orgánicos descubiertos hicieron imprescindible el uso de una nomenclatura sistemática.
En el sistema IUPAC de nomenclatura un nombre está formado por tres partes: prefijos, principal y sufijos; Los prefijos indican los sustituyentes de la molécula; el sufijo indica el grupo funcional de la molécula; y la parte principal el número de carbonos que posee. Los alcanos se pueden nombrar siguiendo siete etapas:

Regla 1.- Determinar el número de carbonos de la cadena más larga, llamada cadena principal del alcano. Obsérvese en las figuras que no siempre es la cadena horizontal.

Elección de la cadena principal

El nombre del alcano se termina en el nombre de la cadena principal (octano) y va precedido por los sustituyentes.

Regla 2.- Los sustituyentes se nombran cambiando la terminación –ano del alcano del cual derivan por –ilo (metilo, etilo, propilo, butilo). En el nombre del alcano, los sustituyentes preceden al nombre de la cadena principal y se acompañan de un localizador que indica su posición dentro de la cadena principal. La numeración de la cadena principal se realiza de modo que al sustituyente se le asigne el localizador más bajo posible.

Nomenclatura de los sustituyentes
Regla 3.- Si tenemos varios sustituyentes se ordenan alfabéticamente precedidos por lo localizadores. La numeración de la cadena principal se realiza para que los sustituyentes en conjunto tomen los menores localizadores.

Nomenclatura de alcanos

Si varios sustituyentes son iguales, se emplean los prefijos di, tri, tetra, penta, hexa, para indicar el número de veces que aparece cada sustituyente en la molécula. Los localizadores se separan por comas y debe haber tantos como sustituyentes.

Nomenclatura de alcanos

Los prefijos de cantidad no se tienen en cuenta al ordenar alfabéticamente.

Regla 4.- Si al numerar la cadena principal por ambos extremos, nos encontramos a la misma distancia con los primeros sustituyentes, nos fijamos en los demás sustituyentes y numeramos para que tomen los menores localizadores.

Nomenclatura de alcanos

Regla 5.- Si al numerar en ambas direcciones se obtienen los mismos localizadores, se asigna el localizador más bajo al sustituyente que va primero en el orden alfabético.

Regla 6.- Si dos a más cadenas tienen igual longitud, se toma como principal la que tiene mayor número de sustituyentes.

Nomenclatura de alcanos

Regla 7.- Existen algunos sustituyentes con nombres comunes aceptados por la IUPAC, aunque se recomienda el uso de la nomenclatura sistemática.

Nomenclatura de alcanos

Los nombres sistemáticos de estos sustituyentes se obtienen numerando la cadena comenzando por el carbono que se une a la principal. El nombre del sustituyente se forma con el nombre de la cadena más larga terminada en –ilo, anteponiendo los nombres de los sustituyentes que tenga dicha cadena secundaria ordenados alfabéticamente. Veamos un ejemplo:

Nomenclatura de alcanos

jueves, 22 de marzo de 2012



Se denomina gas al estado de agregación de la materia que bajo ciertas condiciones de temperatura y presión permanece en estado gaseoso. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:
  • Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a que se mueven las moléculas.
  • Los gases ocupan completamente el volumen del recipiente que los contiene.
  • Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.
  • Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.

jueves, 15 de marzo de 2012

¿QUE ES QUIMICA?

Se denomina química a la ciencia que estudia tanto la composición, estructura y propiedades de la materia como los cambios que ésta experimenta durante las reacciones químicas y su relación con la energía. Históricamente la química moderna es la evolución de la alquimia tras la Revolución química (1733).
Las disciplinas de la química se han agrupado según la clase de materia bajo estudio o el tipo de estudio realizado. Entre éstas se tienen la química inorgánica, que estudia la materia inorgánica; la química orgánica, que trata con la materia orgánica; la bioquímica, el estudio de substancias en organismos biológicos; la físico-química, que comprende los aspectos energéticos de sistemas químicos a escalas macroscópicas, moleculares y atómicas; la química analítica, que analiza muestras de materia y trata de entender su composición y estructura. Otras ramas de la química han emergido en tiempos recientes, por ejemplo, la neuroquímica estudia los aspectos químicos del cerebro.

viernes, 24 de febrero de 2012

I. GASES.

II. SOLUCIONES.

III. QUIMICA ORGANICA.

IV. HIDROCARBUROS SATURADOS (ALCANOS).

V. HIDROCARBUROS INSATURADOS (AKGUENOS - ALQUINOS).

VI. AROMATICOS.

VII. ALCOHOLES, FENULES Y ETERES.